1. A、B兩地相距320千米,甲、乙二人駕車分別從A、B兩地相向而行,甲每小時行36千米,乙每小時比甲多行8千米。甲、乙各有一部對講機(jī),對講機(jī)的使用范圍是40千米。那么,甲、乙二人出發(fā)后( )小時可以開始用對講機(jī)聯(lián)絡(luò)。
A. 35/8 B. 3.5 C. 17/4 D. 4.5
2. 如圖所示,A的面積為36平方米,B的面積為24平方米,A、B之間的落差為5米,現(xiàn)在要將A地的土移到B地,使A、B同樣高,B地應(yīng)升高( )米。
A. 2 B. 2.4 C. 2.5 D. 3
3. 某公司一季度有82%的人全勤,二季度有87%的人全勤,三季度有96%的人全勤,四季度有93%的人全勤。那么全年全勤的人最多占( ),最少占( )。
A. 82%,42% B. 82%,58%
C. 87%,58% D. 87%,42%
4. 在9×9的方格表中,每行每列都有小方格被染成黑色,且一共只有29個小方格為黑色。如果a表示至少包含5個黑色小方格的行的數(shù)目,b表示至少包含5個黑色小方格的列的數(shù)目,則a+b的最大值是( )。
A. 25 B. 10 C. 6 D. 14
5. 一次象棋比賽共有10名選手參加,他們分別來自甲、乙、丙三個隊(duì),每個人都與其余九名選手各賽一盤,每盤棋的勝利者得1分,負(fù)者得0分,平局各得0.5分。結(jié)果甲隊(duì)選手平均得4.5分,乙隊(duì)選手平均得3.6分,丙隊(duì)選手平均得9分,那么甲、乙、丙三隊(duì)參加比賽的選手的人數(shù)依次是( )。
A. 6人、3人、1人 B. 4人、5人、1人
C. 3人、5人、2人 D. 5人、1人、4人
(浙江公務(wù)員網(wǎng)http://zymfqzo.cn)參考答案解析
1. B【解析】 當(dāng)對講機(jī)可以使用時,甲、乙二人共行駛了320-40=280(千米)。設(shè)出發(fā)后t小時可以開始用對講機(jī)聯(lián)絡(luò),根據(jù)題意可得方程:
36t+(36+8)t=280,解得t=3.5(小時),由此可知本題答案為B。
2. D【解析】 圖所示,將B面視為水平面,A面所在六面體的體積為36×5=180(立方米),將這180立方米的土平均分布在(A+B)的面上,所得到的高就是B面上升的高度,即180÷(36+24)=3(米),故本題答案為D。
3. B【解析】 當(dāng)一季度全勤的人在其他三個季度也是全勤時,全年全勤人數(shù)的比例最高,即占82%。一季度沒有全勤的人數(shù)占18%,二季度沒有全勤的人數(shù)占13%,三季度沒有全勤的人數(shù)占4%,四季度沒有全勤的人數(shù)占7%,因此全年至少有1-(18%+13%+4%+7%)=58%的人全勤,故本題答案為B。
4. B【解析】 假設(shè)a+b≥11,且a≥b,則2a≥11,因?yàn)椴淮嬖谌景敫竦那闆r,所以a≥6。那么這a行中至少有黑色小方格6×5=30(個),與題干中只有29個黑色小方格的條件相矛盾,因此假設(shè)不成立,a+b≤10,當(dāng)a+b=10時,黑色小方格的分布如下圖。故本題答案為B。
5. B【解析】 根據(jù)10名選手參加比賽,取勝者得1分,而丙隊(duì)選手平均得分9分,這樣丙隊(duì)參賽選手只能是1人,且與其余9名選手比賽中應(yīng)全部獲勝。
又根據(jù)每盤賽棋中勝者得1分,負(fù)者0分,平局各得0.5分,可知各隊(duì)得分總數(shù)應(yīng)是整數(shù)或小數(shù)部分的十位上是5,現(xiàn)乙隊(duì)選手平均得3.6分,十位上是6,同樣,甲、乙兩隊(duì)共有9人參賽,這樣乙隊(duì)參賽選手肯定是5人。
因此甲隊(duì)參賽選手人數(shù)是4人,乙隊(duì)參賽選手人數(shù)是5人,丙隊(duì)參賽選手人數(shù)是1人。